Regulation of cellular iron metabolism
نویسندگان
چکیده
Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron-sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.
منابع مشابه
Regulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملIron metabolism: current facts and future directions
Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respo...
متن کاملMolecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress.
As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the...
متن کاملThe regulation of hepcidin and its effects on systemic and cellular iron metabolism.
Systemic iron homeostasis depends on the regulated expression of hepcidin, a peptide hormone that negatively regulates iron egress from intestinal cells and macrophages by altering the expression of the cellular iron exporter ferroportin. In doing so, hepcidin can control both the total body iron by modulating intestinal iron absorption as well as promote iron available for erythropoiesis by af...
متن کاملHepicidin and its role in iron metabolism.
Among various micro-nutrients, iron plays a major role not only for hemoglobin alone but also for oxidative metabolism and energy production. Hemoglobin functions as a chief oxygen carrier while other iron containing mitochondrial enzymes and respiratory chain proteins are involved in oxidative metabolism and release of energy from carbohydrates and fats. Iron salts have very low bioavailabilit...
متن کاملTwo to Tango: Regulation of Mammalian Iron Metabolism
Disruptions in iron homeostasis from both iron deficiency and overload account for some of the most common human diseases. Iron metabolism is balanced by two regulatory systems, one that functions systemically and relies on the hormone hepcidin and the iron exporter ferroportin, and another that predominantly controls cellular iron metabolism through iron-regulatory proteins that bind iron-resp...
متن کامل